Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 326, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561689

RESUMO

BACKGROUND: Jilin white goose is an excellent local breed in China, with a high annual egg production and laying eggs mainly from February to July each year. The testis, as the only organ that can produce sperm, can affect the sexual maturity and fecundity of male animals. Its growth and development are affected and regulated by a variety of factors. Proteomics is generally applied to identify and quantify proteins in cells and tissues in order to understand the physiological or pathological changes that occur in tissues or cells under specific conditions. Currently, the female poultry reproductive system has been extensively studied, while few related studies focusing on the regulatory mechanism of the reproductive system of male poultry have been conducted. RESULTS: A total of 1753 differentially expressed proteins (DEPs) were generated in which there were 594, 391 and 768 different proteins showing differential expression in three stages, Initial of Laying Cycle (ILC), Peak of Laying Cycle (PLC) and End of Laying Cycle (ELC). Furthermore, bioinformatics was used to analyze the DEPs. Gene ontology (GO) enrichment, Clusters of Orthologous Groups (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) network analysis were adopted. All DEPs were found to be implicated in multiple biological processes and pathways associated with testicular development, such as renin secretion, Lysosomes, SNARE interactions in vesicle trafficking, the p53 signaling pathway and pathways related to metabolism. Additionally, the reliability of transcriptome results was verified by real-time quantitative PCR by selecting the transcript abundance of 6 selected DEPs at the three stages of the laying cycle. CONCLUSIONS: The funding in this study will provide critical insight into the complex molecular mechanisms and breeding practices underlying the developmental characteristics of testicles in Jilin white goose.


Assuntos
Gansos , Testículo , Animais , Masculino , Feminino , Gansos/genética , Reprodutibilidade dos Testes , Sêmen , Transcriptoma , Perfilação da Expressão Gênica
2.
Poult Sci ; 103(3): 103424, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330682

RESUMO

Feather is an important economic trait of poultry, and growth and development state of feathers plays an important role in the economic value of poultry. Dermal fibroblasts are required for structural integrity of the skin and for feather follicle development. How FOXO3 affects feather follicle development as skin tissues change during goose embryo (Anser cygnoides) development and growth is not well understood. Here, we demonstrate that in vitro culture of single feathers and skin tissue results in changes in feather morphological structure by adding drugs to the culture medium that affect FOXO3 expression. We used feather follicles to show that during growth, the root location of feathers, the dermis layer, affects cell proliferation and apoptosis and regulates the expression of major genes in the Wingless-types/beta-catenin (Wnt/ß-catenin) signaling pathway through the activity of FOXO3 in dermal fibroblasts. Feathers and dorsal skin tissues develop the correct structure, but feather length and width and feather follicle diameter change significantly (p < 0.05) without significant changes in feather follicle density (p > 0.05). Transfected dermal fibroblasts also showed that FOXO3 affected the formation and development of feather follicles in the embryonic stage by regulating the Wnt/ß-catenin signaling pathway. Therefore, this study reveals the critical role of dermal fibroblast-FOXO3-induced Wnt/ß-catenin signaling in promoting the formation and development of embryonic feather follicles.


Assuntos
Plumas , Gansos , Animais , Via de Sinalização Wnt , beta Catenina/genética , Galinhas
3.
Poult Sci ; 103(4): 103508, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350393

RESUMO

Goose down feather has become one of the most important economical products in the goose breeding industry and it provides several essential physiological roles in birds. Therefore, understanding and regulating the development of skin and feather follicles during embryogenesis is critical for avian biology and the poultry industry. MicroRNAs are known to play an important role in controlling gene expression during skin and feather follicle development. In this study, bioinformatics analysis was conducted to select miR-140-y as a potential miRNA involved in skin and feather follicle development and to predict TCF4 as its target gene. This gene was expressed at significant levels during embryonic feather follicle development, as identified by qPCR and Western blot. The targeting relationship was confirmed by a dual-luciferase assay in 293T cells. Then, the miR-140-y/TCF4 function in dermal fibroblast cells was explored. The results showed that miR-140-y could suppress the proliferation of goose embryonic dermal fibroblast cells (GEDFs) by suppressing the activity of some Wingless-types (Wnt) pathway related genes and proliferation marker genes, while miR-140-y inhibition led to the opposite effect. Similarly, the inhibition of the TCF4 gene results in blocking the proliferation of GEDFs by reducing the activity of some Wnt pathway-related genes. Finally, the co-transfection of miR-140-y inhibitor and siRNA-TCF4 results in a rescue of the TCF4 function and an increase of the Wnt signaling pathway and GEDFs proliferation. In conclusion, these results demonstrated that the miR-140-y-TCF4 axis influences the activity of the Wnt signaling pathway and works as a dynamic regulator during skin and feather follicle development.


Assuntos
MicroRNAs , Via de Sinalização Wnt , Animais , Gansos/genética , Gansos/metabolismo , Galinhas/genética , Plumas , Hungria , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Embrionário , Proliferação de Células/genética
4.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36371804

RESUMO

Poultry is subject to varying degrees of feather loss and feather pecking during production, which seriously affects the live appearance and carcass appearance of their commercial traits and greatly reduces the production profitability of the farming enterprise. It also has an impact on down production and quality in the case of geese. In this study, mathematical models (Logistic, Gompertz, and Von Bertalanffy) were used to assess feather growth and development during the embryonic period in Jilin white geese (Anser cygnoides) predicting the weight and length of feathers from the back, chest, and belly tracts at different embryonic ages, to determine which growth model more accurately described feather growth patterns. The result first showed that the primary feather follicles of the Jilin white goose developed at E14 and secondary feather follicles at E18; primary feather follicle density increased and then decreased, whereas secondary feather follicle density increased continuously and the primary and secondary feather follicles developed independently. Secondly, the embryonic feather growth followed a slow-fast-slow pattern, with feathers growing slowly from E12 to E18, quickly from E18 to E24, and then decreasing after E24 until just before emergence (E30). In addition, before E14, feathers were concentrated in the back tracts, and no feathers were found on the head, neck, chest, abdomen, or wings. By E22, the whole body of the embryo was covered with feathers, and the back feathers were the earliest and fastest to develop. Compared to the Gompertz and von Bertalanffy models, the logistic model fit (R2 = 0.997) was the highest, while the sum of residual squares (RSS = 25661.67), Akaike's information criterion (AIC = 77.600), Bayesian information criterion (BIC = 78.191), and mean square error (MSE = 2851.296) were the lowest. Therefore, the logistic model was more suitable for describing the changes in whole-body feather growth during the embryonic period in Jilin white geese. In conclusion, using the growth curve model to explain the relationship between feather growth and embryonic age in geese will potentially speed up the process of genetic improvement in Jilin white geese (A. cygnoides) and thus provide scientific support for molecular genetic breeding.


Feathers are an important external feature of poultry, and feather follicles are important appendages to the skin. Especially for geese, feather follicle development largely determines feather length and quality, which in turn affects feather-related economic traits. The growth curve is to use mathematical equations to fit the growth and development curve and analyze the growth and development laws of livestock and poultry. Therefore, whether the establishment of a growth curve model can be used to describe the growth process between the embryonic feather weight, length, and embryo age of the Jilin white goose will be worth further study.


Assuntos
Gansos , Dinâmica não Linear , Feminino , Animais , Gansos/genética , Teorema de Bayes , Folículo Ovariano , Crescimento e Desenvolvimento
5.
Animals (Basel) ; 12(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36009690

RESUMO

Skin and feather follicle development are essential processes for goose embryonic growth. Transcriptome and next-generation sequencing (NGS) network analyses were performed to improve the genome of Zhedong White goose and discover the critical genes, miRNAs, and pathways involved in goose skin and feather follicle morphogenesis. Sequencing output generated 6,002,591,668 to 8,675,720,319 clean reads from fifteen libraries. There were 1234, 3024, 4416, and 5326 different genes showing differential expression in four stages, E10 vs. E13, E10 vs. E18, E10 vs. E23, and E10 vs. E28, respectively. The differentially expressed genes (DEGs) were found to be implicated in multiple biological processes and pathways associated with feather growth and development, such as the Wnt signaling pathway, cell adhesion molecules, ECM-receptor interaction signaling pathways, and cell cycle and DNA replication pathways, according to functional analysis. In total, 8276 DEGs were assembled into twenty gene profiles with diverse expression patterns. The reliability of transcriptome results was verified by real-time quantitative PCR by selecting seven DEGs and five miRNAs. The localization of forkhead box O3 (FOXO3), connective tissue growth factor (CTGF), protein parched homolog1 (PTCH1), and miR-144-y by in situ hybridization showed spatial-temporal expression patterns and that FOXO3 and miR-144-y have an antagonistic targeting relationship. The correlation coefficient of FOXO3 and miR-144-y was -0.948, showing a strong negative correlation. Dual-luciferase reporter assay results demonstrated that miR-144-y could bind to the expected location to suppress the expression of FOXO3, which supports that there is a targeting relationship between them. The detections in this report will provide critical insight into the complex molecular mechanisms and breeding practices underlying the developmental characteristics of skin and feather follicles in Zhedong white geese.

6.
Front Physiol ; 13: 858274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669574

RESUMO

Feather performs important physiological functions in birds, and it is also one of the economic productions in goose farming. Understanding and modulating feather follicle development during embryogenesis are essential for bird biology and the poultry industry. CHIR-99021 is a potent Wnt/ß-catenin signaling pathway activator associated with feather follicle development. In this study, goose embryos (Anser cygnoides) received an in ovo injection of CHIR-9902, which was conducted at the beginning of feather follicle development (E9). The results showed that feather growth and feather follicle development were promoted. The Wnt signaling pathway was activated by the inhibition of GSK-3ß. Transcriptomic analyses showed that the transcription changes were related to translation, metabolism, energy transport, and stress in dorsal tissue of embryos that received CHIR-99021, which might be to adapt and coordinate the promoting effects of CHIR-99021 on feather follicle development. This study suggests that in ovo injection of CHIR-99021 is a potential strategy to improve feather follicle development and feather-related traits for goose farming and provides profiling of the Wnt signaling pathway and transcriptome in dorsal tissue of goose embryos for further understanding of feather follicle development.

7.
Animals (Basel) ; 12(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35681891

RESUMO

In production practice, we have found that the gray and black down on the backs of the Holdobaggy goslings is usually darker in females than in males. Melanin is the key pigment affecting the color of poultry plumage. Therefore, to determine whether the darkness of the dorsal plumage of the Holdobaggy goslings is related to sex, we study the melanin in the feather follicles of the dorsal skin during the embryonic period. The feather follicle structure and melanin distribution on the dorsal surface of the goose embryo is observed by HE staining and melanin-specific staining. The melanin content in the feather follicles of the dorsal skin of goslings is determined by ELISA. The results showed that the melanin content is higher in female geese than in males (p < 0.05). In addition, we also analyze the mRNA and protein expression levels of melanin-related genes (TYRP1 and ASIP) by quantitative real-time PCR and Western blotting analysis. The results show that the mRNA expression level of TYRP1 is significantly higher in the females' dorsal skin feather follicles (p < 0.05), while the mRNA expression level of ASIP is significantly higher in the dorsal skin feather follicles of male geese (p < 0.05). In conclusion, the difference between males and females in the color of the black feathers on the dorsal track of the Holdobaggy goslings is verified, and it is feasible to identify the sex by the initial plumage color.

8.
Poult Sci ; 101(6): 101825, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35381530

RESUMO

The Wingless-types/beta-catenin (Wnt/ß-catenin) signaling pathway plays an important role in embryonic development and affects the physiological development processes of feather follicles. To investigate the role of Wnt/ß-catenin pathway in regulating feather follicles morphogenesis, in ovo injection of CHIR-99021, an activator of the Wnt/ß-catenin signaling pathway, was conducted in chick embryo model. Initially, a total of 40 embryos were used to assess feather follicles morphogenesis and the expression of ß-catenin (E9-E17). The histological results showed that feather follicle morphogenesis was mainly completed from E9 to E17. ß-catenin was involved in the processing of the appearance of dermal cell condensation (E9) and the completion of the feather follicles morphogenesis (E17). Next, a total of 160 fertilized eggs were randomly divided into 8 groups for in ovo injection at E9, including a Normal Saline injected group (CON) and the 500, 1,000, 2,000, 5,000, 10,000, 50,000, and 100,000 ng CHIR-99021 groups. Dorsal skin tissue samples were collected at E17 for investigating feather follicles morphology and expressions of ß-catenin and lymphoid enhancerbinding factor-1 (LEF1) at gene and protein levels. The results showed that feather follicle diameter in the injected groups were significantly (P < 0.05) increased with limit dose-independence compared to the CON group. CHIR-99021 significantly (P < 0.05) influenced the mRNA expressions of catenin beta-1 (CTNNB1) and downstream target LEF1. In ovo injection of CHIR-99021 caused that ß-catenin and LEF1 were significantly (P < 0.05) increased followed the increased doses as determined by western blotting. The immunochemical results showed that ß-catenin was detected in the dermal papilla of feather follicles. Given these results, this study suggests to developmental biology that in ovo injection of CHIR-99021 promoted feather follicles morphogenesis and development via activating Wnt/ß-catenin signaling pathway and upregulating downstream target LEF1 during embryonic period in chick embryo model. Moreover, CHIR-99021 may be a strong candidate to promote the animal feather/hair industry, especially as a reference for bird feather production.


Assuntos
Via de Sinalização Wnt , beta Catenina , Animais , Embrião de Galinha , Galinhas/metabolismo , Plumas , Piridinas , Pirimidinas , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...